
Hypergraph regularity and quasi-randomness

Brendan Nagle∗ Annika Poerschke† Vojtěch Rödl‡ Mathias Schacht§

Abstract
Thomason and Chung, Graham, and Wilson were the first to
systematically study quasi-random graphs and hypergraphs,
and proved that several properties of random graphs imply
each other in a deterministic sense. Their concepts of
quasi-randomness match the notion of ε-regularity from the
earlier Szemerédi regularity lemma. In contrast, there exists
no “natural” hypergraph regularity lemma matching the
notions of quasi-random hypergraphs considered by those
authors.

We study several notions of quasi-randomness for 3-

uniform hypergraphs which correspond to the regularity

lemmas of Frankl and Rödl, Gowers and Haxell, Nagle and

Rödl. We establish an equivalence among the three notions

of regularity of these lemmas. Since the regularity lemma of

Haxell et al. is algorithmic, we obtain algorithmic versions

of the lemmas of Frankl–Rödl (a special case thereof) and

Gowers as corollaries. As a further corollary, we obtain that

the special case of the Frankl–Rödl lemma (which we can

make algorithmic) admits a corresponding counting lemma.

(This corollary follows by the equivalences and that the

regularity lemma of Gowers or that of Haxell et al. admits

a counting lemma.)

1 Introduction

Thomason [18, 19] and Chung, Graham, and Wilson [5]
were the first to systematically study quasi-random
graphs and hypergraphs, and proved that several prop-
erties of random graphs imply each other in a deter-
ministic sense. Recently, and in connection with hy-
pergraph regularity lemmas, related concepts of quasi-
randomness for hypergraphs were introduced. We fo-
cus to the 3-uniform hypergraph regularity lemmas of
Frankl and Rödl [8], Gowers [9] and Haxell, Nagle and
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Rödl [11, 12]. In this paper, we discuss the relation of
these hypergraph concepts to those suggested earlier,
and we establish an equivalence among these properties
(see Corollary 2.1). As a consequence, we infer algorith-
mic versions of the regularity lemmas for 3-uniform hy-
pergraphs of Frankl and Rödl and of Gowers (see Corol-
lary 2.2) (using that the lemma of Haxell et al. is algo-
rithmic). Perhaps the most important feature of these
three regularity lemmas is that they all admit a corre-
sponding counting lemma (which estimates the number
of any fixed subhypergraph in an appropriately quasi-
random environment). Strictly speaking, our algorithm
(and equivalence) for Frankl and Rödl’s lemma can only
consider a special case (of their lemma) for which no cor-
responding counting lemma had been obtained before.
A further corollary of our work shows that, nonetheless,
this special case (which we can make algorithmic) does
admit a counting lemma (see Corollary 2.3).

1.1 Quasi-random graphs. We begin our discus-
sion with some results on quasi-random graphs from
the papers of Thomason [18, 19] and Chung, Graham
and Wilson in their influential paper [5]. We consider
the graph properties of uniform edge distribution (disc),
deviation (dev), and C4-minimality (cycle). We say a
sequence of graphs (Gn = (Vn, En))n∈N with |Vn| = n
and density e(Gn)/

(
n
2

)
= d satisfies property

disc: if |e(U)− d
(|U |

2

)
| = o(n2) for every U ⊆ Vn,

dev: ifX
u,v∈Vn

˛̨̨̨ X
i,j∈{0,1}

d2−i−j(d− 1)i+j |N i(u) ∩N j(v)|
˛̨̨̨
= o(n3),

cycle: if the number of ordered cycles of length four
in Gn is at most d4n4 + o(n4),

where we denote by N1(u) the neighbourhood N(u)
of u and by N0 the set Vn \ N(u) of non-adjacent
vertices of u, and where an ordered cycle of length 4
is a sequence of distinct vertices (v1, v2, v3, v4) of Vn

where {vi, vj} ∈ En whenever |i − j| = 1, 3. The
three properties above are all equivalent [5]. Note that
when d = 1/2, it follows from the definition that dev
holds if, and only if, Gn contains (approximately) as
many subgraphs of C4 (the 4-cycle) having oddly many



edges as it does subgraphs of C4 having evenly many
edges. For densities d 6= 1/2, one scales the weights
of these subgraphs appropriately. More precisely, for a
graph Gn = (Vn, En) of density d, we note that dev is
equivalent to

(1.1)
∑

u0,u1∈Vn

∑
v0,v1∈Vn

∏
i∈{0,1}

∏
j∈{0,1}

g(ui, vj) = o(n4),

where g(u, v) = 1− d if {u, v} ∈ En and g(u, v) = −d if
{u, v} 6∈ En.

The quasi-random concepts above are closely re-
lated to the earlier notion of ε-regularity, central to
Szemerédi’s regularity lemma [17] (see Theorem 3.2).
Roughly speaking, the regularity lemma asserts that
the vertex set of any graph can be partitioned into a
bounded number of classes in such a way that most of its
resulting induced bipartite subgraphs satisfy a bipartite
version of disc (see disc2 in Definition 1.1) (and so, by
the aforementioned equivalence, they also satisfiy bipar-
tite versions of dev and cycle). The equivalence above
was used in [1, 2] to derive the algorithmic version of
Szemerédi’s regularity lemma. Indeed, naively checking
disc requires exponential time, while cycle (or dev)
can be verified in polynomial time (and checking disc
was the central difficulty in making Szemerédi’s original
proof constructive).

We now consider four approaches to possible gen-
eralizations of disc, dev, and cycle to (3-uniform) hy-
pergraphs. The first three approaches will lack impor-
tant properties which held in the case of graphs. In
Section 1.5 we will finally state the appropriate general-
ization and then in Secion 2 we state our main results.

1.2 Straightforward generalization. The con-
cepts disc, dev, and cycle have natural counterparts
for 3-uniform hypergraphs (as well as for k-uniform
hypergraphs). It turned out that finding the appro-
priate generalization is not straightforward. For ex-
ample, let’s say that a 3-uniform, n-vertex, hyper-
graph Hn with d

(
n
3

)
hyperedges satisfies weak-disc, if

|e(U)− d
(|U |

3

)
| = o(n3) for all subsets U ⊂ V (Hn), and

let’s say that Hn satisfies oct if its number of ordered oc-
trahedra is asymptotically minimal d8n6 +o(n6). (Here,
the octahedron is the complete 3-partite 3-uniform hy-
pergraph K

(3)
2,2,2 having two vertices per class, and an

ordering of K
(3)
2,2,2 corresponds to a labeling of its ver-

tices.) Then weak-disc and oct are not equivalent.
Indeed, let Hn = K3(G(n, 1/2)) be the 3-uniform hy-
pergraph whose triples correspond to triangles of the
random graph G(n, 1/2) on n vertices, where the edges
of G(n, 1/2) appear independently with probability 1/2.
Then, w.h.p., Hn satisfies weak-disc with density d =

1/8+ o(1) and contains (1/8)4n6 + o(n6) ordered copies
of K

(3)
2,2,2. However, all n-vertex 3-uniform hypergraphs

of density d = 1/8 contain at least (1/8)8n6 + o(n6)
ordered copies of K

(3)
2,2,2, and this lower bound is real-

ized by the random 3-uniform hypergraph on n-vertices
whose edges are independently included with probabil-
ity 1/8. Similar counterexamples exist for the devia-
tion property, which for a 3-uniform hypergraph Hn =
(Vn, En) of density d is defined as

(1.2) dev :
X

u0,u1

X
v0,v1

X
w0,w1

Y
i,j,k∈{0,1}

h(ui, vj , wk) = o(n6),

where h(u, v, w) = 1 − d if {u, v, w} ∈ En and
h(u, v, w) = −d if {u, v, w} 6∈ En.

We mention that one can prove a hypergraph reg-
ularity lemma whose regularity concept corresponds to
weak-disc. An unsatisfying feature of such a lemma is
that it can’t, in principle, admit a corresponding count-
ing lemma. There are no known hypergraph regularity
lemmas corresponding to oct or dev, as we’ve defined
them above.

1.3 A refined approach to disc. Frankl and Rödl
suggested the following concept of uniform edge distri-
bution (see also [3, 4]). Say that an n-vertex 3-uniform
hypergraph Hn = (Vn, En) of density d satisfies disc if
||En ∩K3(G)| − d|K3(G)|| = o(n3) holds for all graphs
G with vertex set Vn, where K3(G) denotes the collec-
tion of triples of vertices of Vn which span a triangle
K3 in G. For d = 1/2, it was shown in [4] that disc
(just defined) and dev and oct (defined above) are all
equivalent (see also [13] for d 6= 1/2).

In the definition above, we may view the hyper-
graph Hn = (Vn, En) as a subset of the triangles of the
complete graph Kn. Similarly to how Szemerédi’s reg-
ularity lemma partitions the vertex set of a graph, the
recent regularity lemmas for 3-uniform hypergraphs also
partition the set of pairs of vertices. As a consequence,
it is necessary to consider notions of quasi-randomness
which involve not only the hypergraph Hn = (Vn, En),
but also an underlying graph G for which En ⊆ K3(G).

1.4 Absolute quasi-random properties. The dis-
cussion above leads to the following concepts, which
were partly studied in [13]. To begin our presentation,
we state the bipartite versions of disc, dev, and cycle
for graphs.

Definition 1.1. Let ε > 0 and let G = (U ∪̇V,E)
be a bipartite graph with |U | = |V | = n and den-
sity e(G)/n2 = d2 ± ε. We say G has the property

disc2(ε): if |eG(U ′, V ′) − d2|U ′||V ′|| ≤ εn2 for all
U ′ ⊆ U and V ′ ⊆ V ;



dev2(ε): if∑
u0,u1∈U

∑
v0,v1∈V

∏
i∈{0,1}

∏
j∈{0,1}

g(ui, vj) ≤ εn4,

where g(u, v) = 1 − d2 if {u, v} ∈ E and g(u, v) =
−d2 if {u, v} 6∈ E;

cycle2(ε): if G contains at most d4
2

(
n
2

)2+εn4 4-cycles.

We now define corresponding notions for 3-uniform
hypergraphs H with underlying 3-partite graphs G.

Definition 1.2. Let ε > 0 and let G = G12∪̇G13∪̇G23

be a 3-partite graph with 3-partition V (G) = U ∪̇V ∪̇W ,
|U | = |V | = |W | = n, and let H be a 3-uniform
hypergraph where E(H) ⊆ K3(G). Let Gij be of density
d2 ± ε for 1 ≤ i < j ≤ 3 and let e(H) = d3|K3(G)|,
i.e., H has relative density d3 w.r.t. G. We say (H,G)
has the property

disc3(ε): if Gij has disc2(ε) for 1 ≤ i < j ≤ 3
and ||E(H) ∩ K3(G′)| − d3|K3(G′)|| ≤ εn3 for all
subgraphs G′ of G;

dev3(ε): if Gij has dev2(ε) for 1 ≤ i < j ≤ 3 andX
u0,u1∈U

X
v0,v1∈V

X
w0,w1∈W

Y
i,j,k∈{0,1}

hH,G(ui, vj , wk) ≤ εn6,

where

hH,G(u, v, w) =

8><>:
1− d3, if {u, v, w} ∈ E(H)

−d3, if {u, v, w} ∈ K3(G) \ E(H)

0, otherwise;

oct3(ε): if Gij has cycle2(ε) for 1 ≤ i < j ≤ 3 and H

contains at most d8
3d

12
2

(
n
2

)3 + εn6 copies of K
(3)
2,2,2.

We refer to pairs (H,G) satisfying the properties in Def-
inition 1.2 with ε � d2, d3 as absolute quasi-random,
since the measure of quasi-randomness ε of the hyper-
graph H is smaller than the (absolute) density of H,
which is essentially d3d

3
2. It was shown in [13] (see

also [15, Theorem 2.2]) that for every d3, d2, and ε > 0
there exists δ > 0 such that if a pair (H,G) satisfies
disc3(δ), then it also satisfies oct3(ε). In other words,
disc3 implies oct3, and the arguments from [4] and [13]
can be extended to show that indeed all three notions
disc3, dev3, and oct3 are equivalent in this sense.

Note that the properties in Definition 1.2 become
meaningless if ε ≥ min{d2, d3}, since then the error term
is larger than the main term. However, in all known
regularity lemmas, the condition that ε < min{d2, d3}
(in fact ε � min{d2, d3}) cannot be guaranteed. More
precisely, the measure of quasi-randomness ε of the 3-
uniform hypergraph will typically be larger than the

density d2 of the auxillary underlying graphs in the
regular partition of those lemmas. We therefore need
a refinement of the properties from Definition 1.2,
which leads to the following relative concepts of quasi-
randomness. (For a regular partition whose typical
“blocks” display ε � min{d2, d3}, one must perturb
the edge set of the input hypergraph, which will be
discussed in Theorem 3.3 below (cf. [7, 16]).)

1.5 Relative quasi-random hypergraphs. The
recent regularity lemmas for 3-uniform hypergraphs of
Frankl–Rödl [8], Gowers [9], and Haxell et al. [11, 12]
are based on the following notions of quasi-randomness,
in which the quasi-randomness of H and G are mea-
sured by ε3 and ε2, resp., and where it will typically be
the case that d3 � ε3 � d2 � ε2.

Definition 1.3. Let ε3, ε2 > 0 and G = G12∪̇G13∪̇G23

be a 3-partite graph with 3-partition V (G) = U ∪̇V ∪̇W ,
|U | = |V | = |W | = n, and let H be a 3-uniform
hypergraph with E(H) ⊆ K3(G). Let Gij be of density
d2 ± ε2 for 1 ≤ i < j ≤ 3 and let e(H) = d3|K3(G)|.
We say (H,G) has the property

disc3(ε3, ε2): if Gij has disc2(ε2) for 1 ≤ i < j ≤ 3
and ||E(H) ∩ K3(G′)| − d3|K3(G′)|| ≤ ε3d

3
2n

3 for
all G′ ⊆ G;

dev3(ε3, ε2): Gij has dev2(ε2) for 1 ≤ i < j ≤ 3
and for the function hH,G(u, v, w), defined as in
Definition 1.2, we have

X
u0,u1∈U

X
v0,v1∈V

X
w0,w1∈W

Y
i,j,k∈{0,1}

hH,G(ui, vj , wk)

≤ ε3d
12
2 n6;

oct3(ε3, ε2): if Gij has cycle2(ε2) for 1 ≤ i < j ≤ 3
and H contains at most d8

3d
12
2

(
n
2

)3 +ε3d
12
2 n6 copies

of K
(3)
2,2,2.

We refer to pairs (H,G) satisfying the properties in
Definition 1.3 with ε2 � d2 � ε3 � d3 as relative quasi-
random since here the measure of quasi-randomness ε3

of the hypergraph H is only smaller than the relative
density d3 of H w.r.t. G.

1.6 Hypergraph regularity lemmas. We state the
regularity lemma for 3-uniform hypergraphs of Gow-
ers [9]. The central concept of quasi-randomness in this
lemma is dev3.

Theorem 1.1. For every ε3 > 0, every function
ε2 : N → (0, 1], and every t0 ∈ N, there exist positive in-
tegers T0 and n0 so that for every 3-uniform hypergraph



H = (V,E) on n ≥ n0 vertices, there exist a vertex par-
tition V = V1∪̇ . . . ∪̇Vt, where |V1| ≤ · · · ≤ |Vt| ≤ |V1|+1
and t0 ≤ t ≤ T0, and a partition of pairs of the com-
plete bipartite graphs K[Vi, Vj ], 1 ≤ i < j ≤ t, given
by K[Vi, Vj ] = Gij

1 ∪̇ . . . ∪̇Gij
` , where ` ≤ T0, so that the

following holds.
All but ε3n

3 triples {x, y, z} ∈
(
V
3

)
satisfy that

whenever {x, y, z} ∈ K3(Gij
a ∪̇Gjk

b ∪̇Gik
c ) = K3(G

ijk
abc),

for some 1 ≤ i < j < k ≤ t and (a, b, c) ∈ [`]3,
then (Hijk

abc , G
ijk
abc) satisfies dev3(ε3, ε2(`)) with relative

density |Hijk
abc |/|K3(G

ijk
abc)| of Hijk

abc with respect to Gijk
abc

and the densities of Gij
a , Gjk

b , and Gik
c being 1/`,

where Hijk
abc has edge set E(H) ∩K3(G

ijk
abc). �

If we replace dev3 in Theorem 1.1 by disc3 or oct3,
then we (resp.) obtain the hypergraph regularity lem-
mas of Frankl and Rödl [8] and of Haxell et al. [11, 12].

Remark 1.1. Theorem 1.1 differs slightly from the ver-
sion proved by Gowers [9] in that the original does not
require “most” bipartite graphs Gij

a to have density close
to 1/`. The additional assertion we have stated can be
obtained along similar lines to [8].

We point out that the regularity lemma of Frankl
and Rödl is stronger than we have quoted above.
It asserts the existence of a partition such that
most (Hijk

abc , G
ijk
abc) satisfy the following stronger variant

disc3,r of disc3 (where r can depend on ` and t). For H
and G as in Definition 1.3 and an integer r ≥ 1, we say
(H,G) satisfies disc3,r(ε3, ε2) if

(i ) Gij has disc2(ε2) for 1 ≤ i < j ≤ 3 and

(ii ) ||E(H) ∩
S

i∈[r] K3(Gi)| − d3|
S

i∈[r] K3(Gi)|| ≤ ε3d
3
2n

3

for all families of subgraphs G1, . . . , Gr of G.

Clearly, disc3,1 = disc3, but otherwise disc3,r is
stronger than disc3. Dementieva, Haxell, Nagle and
Rödl [6, Theorem 3.5] proved that oct3 6⇒ disc3,r

when r is large.

2 New results

The main new result is the equivalence of the notions of
quasi-random hypergraphs from Definition 1.3.

Theorem 2.1. For all d3, ε3 > 0, there exists δ3 > 0
such that for all d2, ε2 > 0, there exist δ2 > 0 and n0

such that the following holds.
Let G = G12∪̇G13∪̇G23 be a 3-partite graph with 3-

partition V (G) = U ∪̇V ∪̇W , |U | = |V | = |W | = n ≥ n0,
and let H be a 3-uniform hypergraph where E(H) ⊆
K3(G). Let Gij be of density d2 ± δ2, 1 ≤ i < j ≤ 3,
and let e(H) = d3|K3(G)|.

(i ) If (H,G) satisfies disc3(δ3, δ2), then it also satisfies
oct3(ε3, ε2), i.e., disc3 ⇒ oct3.

(ii ) If (H,G) satisfies oct3(δ3, δ2), then it also satisfies
dev3(ε3, ε2), i.e., oct3 ⇒ dev3.

We prove the assertions (i ) and (ii ) of Theorem 2.1 in
Sections 3 and 4, resp.

We continue with a few immediate corollaries of our
main result. First, the assertion of (i ) above directly
confirms Conjecture 3.8 of Dementieva et al. [6]. They
proved [6, Theorem 3.6] oct3 ⇒ disc3, in which case the
assertion of (i ) above gives oct3 ⇔ disc3. However, a
direct consequence of the counting lemma of Gowers [9,
Theorem 6.8] (more precisely, [10, Corollary 5.3]) gives
dev3 ⇒ oct3. As such, we have the following corollary.

Corollary 2.1. The properties disc3, dev3, and oct3
are equivalent. �

Recalling from Dementieva et al. [6] that oct3 6⇒ disc3,r

(when r is large), Corollary 2.1 allows us to extend their
work to say that dev3 6⇒ disc3,r.

From the algorithmic regularity lemma of Haxell et
al. [11, 12] (based on oct3), the equivalence above im-
plies algorithmic versions of the 3-uniform hypergraph
regularity lemmas of Gowers [9] and Frankl–Rödl [8]
(when r = 1).

Corollary 2.2. There exists an algorithm with run-
ning time O(n6), which constructs the partitions of ver-
tices and pairs from Theorem 1.1. �

Strictly speaking, an algorithmic version for r = 1 of
the Frankl–Rödl regularity lemma was already stated by
Dementieva et al. in [6, Theorem 3.10]. However, at the
time of that announcement, no corresponding counting
lemma was known. By appealing to the counting lemma
of Gowers [9] or Haxell et al. [11, 12], the equivalence
above implies a counting lemma applicable to the special
case r = 1.

Corollary 2.3. For every p ∈ N and ξ, d3 > 0 there
exists δ3 > 0 such that for every d2 > 0 there exist
δ2 > 0 and n0 such that the following holds.

Let G =
⋃̇

1≤i<j≤pG
ij be a p-partite graph with

vertex partition V1∪̇ . . . ∪̇Vp where |V1| = · · · = |Vp| =
n ≥ n0 and let H be a 3-uniform hypergraph with
E(H) ⊆ K3(G). Let Gij be of density d2 ± δ2, 1 ≤
i < j ≤ p and let e(Hijk) = d3|K3(Gijk)| for all
1 ≤ i < j < k ≤ p, where Gijk = G[Vi, Vj , Vk] and
Hijk = H ∩ K3(Gijk). Suppose, moreover, that each
Hijk satisfies disc3(δ3, δ2), 1 ≤ i < j < k ≤ p. Then
the number |Kp(H)| of complete, 3-uniform hypergraphs
on p vertices in H satisfies

|Kp(H)| = (1± ξ)d(p
3)

3 d
(p
2)

2 np . �



3 Uniform edge distribution implies minimality

In this section, we prove part (i ) of Theorem 2.1. The
proof is based on the same implication in the “absolute”
setting, where roughly speaking we will transfer the
known implication disc3 ⇒ oct3 from the absolute
setting to the relative setting. (Similar ideas were used
in [14].) For that we will use Szemerédi’s regularity
lemma for graphs (see Theorem 3.2) and the regular
approximation lemma for 3-uniform hypergraphs (see
Theorem 3.3). We state these auxilary results in the
next section and prove part (i ) of Theorem 2.1 in
Section 3.2.

3.1 Auxiliary results. We will use the following
proposition, which follows from [13, Theorem 6.5] (see
also [15, Theorem 2.2]).

Theorem 3.1. For all d3, ε > 0, there exist δ > 0 and
n0 such that the following holds. Let D be a 3-partite,
3-uniform, hypergraph on the vertex partition U ∪̇V ∪̇W ,
|U | = |V | = |W | = n ≥ n0, and let e(D) = (d3±δ)n3. If
(D,K[U, V,W ]) satisfies disc3(δ), then (D,K[U, V,W ])
has oct3(ε), where K[U, V,W ] denotes the complete
tripartite graph on U ∪̇V ∪̇W . �

Note that Theorem 3.1 draws the same conclusion as (i )
of Theorem 2.1, but in the “absolute” setting. For the
transfer of this result to the “relative” setting, we will
employ the regular approximation lemma for 3-uniform
hypergraphs from [16], Theorem 3.3, and Szemerédi’s
regularity lemma for graphs [17], Theorem 3.2, which
we state below (but in opposite order).

Theorem 3.2. For all µ > 0 and integers t and M ,
there exist S0 and n0 such that for every family of graphs
F1, . . . , FM on the same vertex set V (with |V | = n ≥
n0 and n being a multiple of S0!) and for any given
partition V = V1∪̇ . . . ∪̇Vt, |Vi| = n/t for i ∈ [t], there
exists a refinement V =

⋃̇
i∈[t],j∈[s]Vi,j, with |Vi,j | =

n/(ts) and s ≤ S0, such that for all but µt2s2 pairs
{{i, j}, {k, `}}, 1 ≤ i < j ≤ t, 1 ≤ k, ` ≤ s, the
induced bipartite graphs Fm[Vi,j , Vk,`] satisfy disc2(µ)
for all m = 1, . . . ,M . �

Next we state the regular approximation lemma for
3-uniform hypergraphs (see [16, Lemma 4.2] or [14, The-
orem 54]). Roughly speaking, it asserts that for every
3-uniform hypergraph H, there exists a hypergraph H̃
obtained from H by adding or deleting a few hyper-
edges from H, so that H̃ admits a vertex partition and
a partition of pairs, as in Theorem 1.1, with the stronger
property that for all blocks of the partition, the hyper-
graph H̃ satisfies the “absolute” disc3 property from
Definition 1.2.

Theorem 3.3. For all d2, ν > 0 and every function
% : N2 → (0, 1], there exist ε0 > 0 and T0 so that the
following holds.

Let G = G12∪̇G13∪̇G23 be a 3-partite graph with
3-partition V (G) = U ∪ V ∪ W , |U | = |V | = |W | =
n ≥ n0 (where n is a multiple of T0!) and let H be
a 3-uniform hypergraph with E(H) ⊆ K3(G). Let Gij

satisfy disc2(ε0) with density d2 for 1 ≤ i < j ≤ 3.
Then there exist integers t and ` ≤ T0 and

(a ) a vertex partition U =
⋃̇

i∈[t]Ui, V =
⋃̇

j∈[t]Vj, and

W =
⋃̇

k∈[t]Uk, with |Ui| = |Vj | = |Wk| = n/t for
i, j, k ∈ [t],

(b ) a partition of pairs of the induced bipartite graphs
G12[Ui, Vj ], G13[Ui,Wk], and G23[Vj ,Wk], i, j, k ∈
[t], given by G12[Ui, Vj ] = P

Ui,Vj

1 ∪̇ . . . ∪̇P
Ui,Vj

` ,
G13[Ui,Wk] = PUi,Wk

1 ∪̇ . . . ∪̇PUi,Wk

` , and
G23[Vj ,Wk] = P

Vj ,Wk

1 ∪̇ . . . ∪̇P
Vj ,Wk

` , and

(c ) a 3-partite, 3-uniform hypergraph H̃ on the same
vertex set U ∪̇V ∪̇W

such that the following holds:

(I) |E(H)4E(H̃)| ≤ νn3 and

(II) for all 1 ≤ i < j < k ≤ t and (a, b, c) ∈ [`]3

the pair (H̃ijk
abc , P

ijk
abc ) has disc3(%(t, `)) with rel-

ative density |E(H̃ijk
abc)|/|K3(P

ijk
abc )| and the den-

sities of the involved bipartite graphs being d2/`,
where P ijk

abc = P
Ui,Vj
a ∪̇PUi,Wk

b ∪̇P
Vj ,Wk
c and H̃ijk

abc =
H̃ ∩K3(P

ijk
abc ). �

The main difference between Theorems 1.1 and 3.3 con-
cerns the degree of quasi-randomness of (H̃ijk

abc , P
ijk
abc ) (in

Theorem 3.3) and (Hijk
abc , G

ijk
abc) (in Theorem 1.1). The-

orem 3.3 guarantees that, at the cost of altering only
a few triples (globally), the measure %(t, `) of quasi-
randomness can be much smaller than 1/(t`), while The-
orem 1.1 can only guarantee the measure ε3 of quasi-
randomness as a fixed constant (where t and ` depend
of ε3). On the other hand, in Theorem 1.1, the quasi-
random property holds directly for H, while in Theo-
rem 3.3, it only applies to the changed hypergraph H̃.

3.2 Proof of (i ) of Theorem 2.1. We now prove
assertion (i ) of Theorem 2.1.

Proof. (disc3 ⇒ oct3) Let d3, ε3 > 0 be given and let
δ′ be the constant ensured by Theorem 3.1 for d3 and
ε′ = ε3/4. Without loss of generality, we may assume
that δ′ ≤ ε′d8

3/8. For Theorem 2.1, we set δ3 = δ′/4
and let δ0 � δ3 . Then, for given d2 and ε2 > 0, we set

0 < ν � min{δ3d3d
3
2, ε3d

8
3d

12
2 /4, δ′d3

2/2}



and

0 < %(t, `) �
(

δ0

S0(µ � δ0/`, M = 3t2`, t)

)3

,

i.e., %(t, `) tends faster to 0 (when t and ` tend to in-
finity) than (δ0/S0)3, where S0(t, `) is given by Sze-
merédi’s regularity lemma, Theorem 3.2, applied with
0 < µ � δ0/`, M = 3t2`, and t. Finally, let

0 < δ2 � ε0 × min
t∈[T0],`∈[T0]

%(t, `) ,

where ε0 and T0 are given by the regular approximation
lemma, Theorem 3.3, applied with ν and %(·, ·). More-
over, we choose δ2 small enough so that disc2(δ2) ⇒
cycle2(ε2) for bipartite graphs of density d2. For these
constants and sufficiently large n let (H,G) be a pair
satisfying disc3(δ3, δ2) as given in Theorem 2.1. We
have to show that (H,G) satisfies oct3(ε3, ε2).

We first apply Theorem 3.3, with ν and %(t, `)
above, to H and G and obtain integers t and ` ≤
T0, a vertex partition, a partition of pairs, and a
hypergraph H̃ as stated in (a )–(c ) in Theorem 3.3 with
properties (I) and (II).

We want to apply Theorem 3.1. For this we
construct a “dense” 3-partite, 3-uniform, hypergraph D
on the same vertex set U ∪̇V ∪̇W , which we view as
a subhypergraph of K3(K[U, V,W ]) the triangles of
K[U, V,W ]. Roughly speaking, we will construct D
by “mimicking” the partition of vertices and pairs of
H̃, which we obtained from Theorem 3.3. For that
we will consider the same vertex partition, but replace
every graph PUi,Vj of density d2/` (similarly, PUi,Wk

and PVj ,Wk) by a random graph BUi,Vj of density 1/`

and for every Bijk
abc we let the edges of D be a random

subset of K3(B
ijk
abc) with a relative density matching the

one of H̃ijk
abc w.r.t. P ijk

abc .
As a consequence of this construction the hyper-

graph D will have absolute density d3± ν (note H only
has relative density d3 w.r.t. G) and we will show that
(D,K[U, V,W ]) satisfies disc3(δ′) (see Claim 1). Hence,
Theorem 3.1 implies that (D,K[U, V,W ]) will also sat-
isfy oct3(ε3/4), which estimates the number of octahe-
dra in D. On the other hand, we will show that the con-
struction of D yields #{K(3)

2,2,2 ⊆ D}×d12
2 ≈ #{K(3)

2,2,2 ⊆
H̃} (see Claim 2). From that we will infer that (H,G)
satisfies oct3(ε3, ε2), since |E(H)4E(H̃)| ≤ νn3 ≤
ε3d

8
3d

12
2 n3/4. We now give the details of this plan.

For the construction of D, we will “mimic” the
partition of vertices and pairs which we obtained for H
after we applied Theorem 3.3. Recall we take the vertex
set of D the same as of H, i.e., U ∪̇V ∪̇W , where there
exists a partition of U = U1∪̇ . . . ∪̇Ut, V = V1∪̇ . . . ∪̇Vt,

and W = W1∪̇ . . . ∪̇Wt. Now for all i, j ∈ [t], consider
a random partition of the edge set of K[Ui, Vj ] into
` parts K[Ui, Vj ] = B

Ui,Vj

1 ∪̇ . . . ∪̇B
Ui,Vj

` . Define the
graphs BUi,Wk

b and B
Vj ,Wk
c for i, j, k ∈ [t] and b, c ∈ [`]

analogously. We may think of the graph B
Ui,Vj
a as

playing a similar role for D as P
Ui,Vj
a does for H̃. Note,

however, that the density of B
Ui,Vj
a is ∼ 1/`, while the

density of P
Ui,Vj
a is ∼ d2/`.

To define the edges of D, fix i, j, k ∈ [t] and a, b, c ∈
[`] and set Bijk

abc = B
Ui,Vj
a ∪̇BUi,Wk

b ∪̇B
Vj ,Wk
c . Let Dijk

abc,
the subhypergraph of D induced on K3(B

ijk
abc), be a ran-

dom subset of K3(B
ijk
abc), where each triple {u, v, w} ∈

K3(B
ijk
abc) is chosen to be an edge in Dijk

abc independently
with probability d(H̃|P ijk

abc ) = |E(H̃ijk
abc)|/|K3(P

ijk
abc )|. In

other words, we construct D in such a way that the rel-
ative density of D w.r.t. Bijk

abc, i.e., d(D|Bijk
abc), is very

close to d(H̃|P ijk
abc ), i.e., the relative density of H̃ w.r.t.

P ijk
abc . We will verify two claims, Claim 1 and 2, for D.

Claim 1. (D,K[U, V,W ]) satisfies disc3(δ′) and
e(D) = (d3 ± δ′/2)n3 with probability 1− o(1).

Proof. Consider an arbitrary subgraph F of K[U, V,W ],
which we view as the union of 3t2` graphs of the form

FUi,Vj
a = F ∩BUi,Vj

a ,

FUi,Wk

b = F ∩BUi,Wk

b , and FVj ,Wk
c = F ∩BVj ,Wk

c .

We apply Szemeredi’s regularity lemma, Theorem 3.2,
to all such 3t2` graphs. This way we obtain a refinement
of the vertex partition on U ∪̇V ∪̇W , and each F

Ui,Vj
a is

split into s2 (typically) quasi-random bipartite graphs.
For each of these 3t2`s2 graphs, say

FUi,p,Vj,q
a = FUi,Vj

a [Ui,p, Vj,q]

⊆ BUi,Vj
a [Ui,p, Vj,q] = BUi,p,Vj,q

a

with p, q ∈ [s], we consider a random subgraph
Q

Ui,p,Vj,q
a ⊆ P

Ui,p,Vj,q
a = P

Ui,Vj
a [Ui,p, Vj,q] , where we in-

clude every edge of P
Ui,p,Vj,q
a independently with prob-

ability e(FUi,p,Vj,q
a )/e(BUi,p,Vj,q

a ), i.e., Q
Ui,p,Vj,q
a has ap-

proximately the same relative density compared to
P

Ui,p,Vj,q
a , as the graph F

Ui,p,Vj,q
a has w.r.t. B

Ui,p,Vj,q
a .

Finally, we consider the union of all such Q
Ui,p,Vj,q
a .

So let

Q =
⋃

i,j∈[t]

⋃
p,q∈[s]

⋃
a∈[`]

QUi,p,Vj,q
a

∪
⋃

i,k∈[t]

⋃
p,r∈[s]

⋃
b∈[`]

Q
Ui,p,Wk,r

b

∪
⋃

j,k∈[t]

⋃
q,r∈[s]

⋃
c∈[`]

Q
Vj,q,Wk,r
c



be the union of all these random graphs. We will show
that w.h.p.

(3.3)
∣∣|K3(Q)| − d3

2|K3(F )|
∣∣ ≤ δ′

8 d3
2n

3

and

(3.4)
∣∣∣|E(H̃) ∩K3(Q)|−d3

2|E(D) ∩K3(F )|
∣∣∣ ≤ δ′

8 d3
2n

3

From (3.3) and (3.4) we infer

||E(D) ∩K3(F )| − d3|K3(F )||

≤

∣∣∣∣∣ |E(H̃) ∩K3(Q)|
d3
2

− d3|K3(Q)|
d3
2

∣∣∣∣∣ +
δ′

4
n3

≤
∣∣∣∣ |E(H) ∩K3(Q)|

d3
2

− d3|K3(Q)|
d3
2

∣∣∣∣ +
δ′

4
n3 +

ν

d3
2

n3

≤ δ′

4
n3 +

δ′

4
n3 +

ν

d3
2

n3 ≤ δ′n3 ,

since (H,G) satisfies disc3(δ3, δ2) with δ3 ≤ δ′/4 and
since |E(H)4E(H̃)| ≤ νn3 ≤ δ′d3

2n
3/2. Since F was

an arbitrary subgraph of K[U, V,W ], this implies that
(D,K[U, V,W ]) satisfies disc3(δ′).

For the proof of (3.3) we consider tripartite graphs

F ijk,pqr
abc = FUi,p,Vj,q

a ∪̇F
Ui,p,Wk,r

b ∪̇F
Vj,q,Wk,r
c

and

Qijk,pqr
abc = QUi,p,Vj,q

a ∪̇Q
Ui,p,Wk,r

b ∪̇Q
Vj,q,Wk,r
c .

Suppose the bipartite subgraphs of F ijk,pqr
abc satisfy

disc2(µ(`)) (all but µt2s2 do) and have density δ0/`.
Then we can appeal to the counting lemma for graph
triangles and infer that the number of triangles in
F ijk,pqr

abc satisfies

(1± ξµ)
e(FUi,p,Vj,q

a ) · e(FUi,p,Wk,r

b ) · e(FVj,q,Wk,r
c )

(n/(st))3
,

where ξµ → 0 as µ → 0. On the other hand, since PUi,Vj

satisfies disc2(%(t, `)), we have that PUi,p,Vj,q satisfies
disc2(s · %(t, `)) with density d2/` ± (s · %(t, `) + δ2).
Consequently, since Q

Ui,p,Vj,q
a is a random subgraph it

satisfies disc2(s · %(t, `) + o(1)) (as long as the density
of F

Ui,p,Vj,q
a is � 1/ log n). Moreover, if the density of

F
Ui,p,Vj,q
a is at least δ0/`, we have that

e(QUi,p,Vj,q ) = (d2± (s · %(t, `) + δ2 + o(1)))e(FUi,p,Vj,q ).

Consequently, if the bipartite subgraphs of F ijk,pqr
abc have

density δ0/`, then we have, again due to the triangle
counting lemma,

|K3(Q
ijk,pqr
abc )| = (1± (ζs·% + δ2))d3

2 × · · ·

×
e(FUi,p,Vj,q

a )e(FUi,p,Wk,r

b )e(FVj,q,Wk,r
c )

(n/(st))3
,

where ζs·% → 0 as s% → 0. In other words, we have
shown that if the bipartite subgraphs of F ijk,pqr

abc satisfy
disc2(µ(`)) and have density δ0/`, then |K3(Q

ijk,pqr
abc )| =

(1 ± (ζs·% + ξµ + δ2 + o(1)))d3
2|K3(F

ijk,pqr
abc )|. Finally,

the first assertion of (3.3) follows from the choice of δ0,
µ(`) � δ0/`, %(t, `) � 1/S0, and the fact that all but
µt2s2 bipartite graphs F

Ui,p,Vj,q
a satisfy disc2(µ(`)).

Noting that, if the bipartite subgraphs of F ijk,pqr
abc

satisfy disc2(µ(`)) and have density δ0/`, then
(H̃ijk,pqr

abc , P ijk,pqr
abc ) satisfies disc3(s3%(t, `)/δ3

0) and ap-
pealing to the random construction of D, we infer that
d(H̃|Qijk,pqr

abc ) = d(D|F ijk,pqr
abc )± s3%(t, `)/δ3

0 + o(1) and
the second assertion of (3.3) follows from the discussion
above. �

Claim 2. With probability 1− o(1) we have

#{K(3)
2,2,2 ⊆ H̃} ≤ (1 + o(1))d12

2 ×#{K(3)
2,2,2 ⊆ D}.

Proof. Apply the counting lemma from [13, The-
orem 6.5] to H̃ to count the number of octahe-
dra. More precisely, apply the dense counting
lemma to H̃ induced on every selection of six ver-
tex classes Ui1 , Ui2 , Vj1 , Vj2 ,Wk1 ,Wk2 and 12 graphs
P

Ui1 ,Vj1
a1 , . . . , P

Ui2 ,Vj2
a4 , . . . , P

Vj2 ,Wk2
c4 . There are t6`12

such choices, and for each such choice, we get an esti-
mate on the number of octahedra of H̃ induced on that
choice. Moreover, for each such choice, we will con-
sider the corresponding such selection with the bipar-
tite graphs PX,Y

a replaced by the corresponding graph
BX,Y

a . For such a selection of “B-graphs”, we can es-
timate the number of octahedra in D induced on those
B-graphs (due to the randomness in the construction
of D). The number of octahedra in H and D for a
corresponding choice of B- and P -graphs will be equal
up to a factor of d12

2 . Repeating this analysis for all
appropriate t6`12 choices then yields the claim. �

Finally, we deduce oct3(ε3, ε2) for (H,G) from the
claims above. Because of Claim 1 and Theorem 3.1,
we have that, w.h.p., (H,G) satisfies oct3(ε′), i.e., the
number of of octahedra in D is at most

(d3 + δ′)8112
(
n
2

)3 + ε′n6 = (d3 + δ′)8
(
n
2

)3 + ε′n6 .

Hence, we infer from the choice of δ′ ≤ ε′d8
3/8 and

Claim 2 that (H̃, G) satisfies oct3(2ε′ + o(1), ε2), in
particular, H̃ contains at most d8

3d
12
2

(
n
2

)3+(2ε′+o(1))n6

octahedra. Note that Gij satisfies cycle2(ε2) due to
the choice of δ2. Now it follows that (H,G) satisfies
oct3(ε3, ε2), since ε′ ≤ ε3/4 and since |E(H)4E(H̃)| ≤
νn3 ≤ ε3d

8
3d

12
2 n3/4, which yields that H contains at

most ε3d
8
3d

12
2 n3/4× n3 octahedra more than H̃. �



4 Minimality implies small deviation

In this section, we prove assertion (ii ) of Theorem 2.1.
The proof is based on the counting lemma from Haxell
et al. [12] and on the equivalence of disc3 and oct3

(which was established in Section 3 using the result from
Dementieva et al. [6, Theorem 3.6]). More precisely,
we first use these tools to derive the following induced
counting lemma for subhypergraphs of the octahedron.
For a suboctahedron O ⊆ K

(3)
2,2,2 with vertex classes

{x0, x1}, {y0, y1}, and {z0, z1} and a hypergraph H
and a graph G with E(H) ⊆ K3(G) we say a copy
of O on vertex pairs {u0, u1}, {v0, v1}, and {w0, w1}
is induced in H (w.r.t. G), if {ui, vj , wk} ∈ K3(G) for
all i, j, k = 0, 1 and {ui, vj , wk} ∈ E(H) if and only if
{xi, yj , zk} ∈ E(O).

Proposition 4.1. For all ξ, d3 > 0, there exists δ3 > 0
such that for all d2 > 0 there exist δ2 > 0 and n0 such
that the following holds.

Let G = G12∪̇G13∪̇G23 be a 3-partite graph with 3-
partition V (G) = U ∪̇V ∪̇W , |U | = |V | = |W | = n ≥ n0

and let H be a 3-uniform hypergraph with E(H) ⊆
K3(G). Let Gij be of density d2 ± δ2 for 1 ≤ i <
j ≤ 3 and let e(H) = d3|K3(G)|. If (H,G) satisfies
oct3(δ3, δ2), then for every suboctahedron O ⊆ K

(3)
2,2,2,

the number of (partite) labeled, induced copies of O in
H w.r.t. G satisfies

#{O ⊆ H induced w.r.t. G}

= (1± ξ)de(O)
3 (1− d3)8−e(O)d12

2 n6 .

Before we prove Proposition 4.1, we derive part (ii ) of
Theorem 2.1 from it.

Proof. (oct3 ⇒ dev3) Let d3, ε3 > 0 be given. We
choose δ3 > 0 small enough so that Propositition 4.1
holds for ξ ≤ ε3(d3(1 − d3)/2)8/2. Then for given
d2 and ε2 > 0, we let δ2 > 0 be small enough for
Propositition 4.1 and so that every bipartite graph
of density d2 with cycle2(δ2) also satisfies dev2(ε2).
Finally, let n0 be large enough so that Propositition 4.1
and cycle2(δ2) ⇒ dev2(ε2) hold.

For a given pair (H,G) satisfying oct3(δ3, δ2), we
apply Propositition 4.1 for every (spanning) suboctahe-
dron O ⊆ K

(3)
2,2,2, and since

∑
u0,u1∈U

∑
v0,v1∈V

∑
w0,w1∈W

∏
i,j,k∈{0,1}

hH,G(ui, vj , wk)

= O(n5) +
∑

O⊆K
(3)
2,2,2

(−d3)8−e(O)(1− d3)e(O)×

×#{O ⊆ H induced w.r.t. G} ,

we obtain∑
u0,u1∈U

∑
v0,v1∈V

∑
w0,w1∈W

∏
i,j,k∈{0,1}

hH,G(ui, vj , wk)

= O(n5)+d8
3(1−d3)8d12

2 n6
∑
O

((−1)8−e(O)±ξ)

≤ O(n5)+
ε3

2
d12
2 n6 ,

where we used
∑

O⊆K
(3)
2,2,2

(−1)8−e(O) = 0. Therefore,

the pair (H,G) satisfies dev3(ε3, ε2) if n is sufficiently
large. �

It is left to prove Proposition 4.1.

Proof. We use the equivalence of disc3 and oct3 in the
following way. Suppose (H,G) satisfies disc3(ε3, ε2)
for some densities d3 and d2. Then it follows directly
from the definition of disc3 that for the complement of
H w.r.t. G, i.e., H = (V (H),K3(G) \ E(H)), (H, G)
satisfies disc3(ε3, ε2) for densities d̄3 = 1 − d3 and d2.
Hence, we infer from the equivalence of disc3 and oct3

that if (H,G) satisfies oct3(δ3, δ2), then (H, G) satisfies
oct3(δ′3, δ2) for some δ′3(δ3) → 0 as δ3 → 0.

For the proof of Proposition 4.1 we may choose the
constants so that

min{ξ, d3, 1− d3} � ξ′ � δ′3 ≥ δ3 � d2 � δ2 .

By the discussion above, we may assume that for the
given pair (H,G) with oct3(δ3, δ2), we have that (H, G)
satisfies oct3(δ′3, δ2).

For a given suboctahedron O ⊆ K
(2)
2,2,2, we “double”

(H,G) according to O. More precisely, let the three
vertex classes of O be {x0, x1}, {y0, y1}, and {z0, z1}
and let U , V , W be the vertex classes of H and G.
First we construct a new 6-partite graph G′ with vertex
classes Ui = U ×{i}, Vj = V ×{j}, and Wk = W ×{k}
with i, j, k = 0, 1, i.e., we take two copies of every
original vertex class. Moreover, let {(u, i), (v, j)} be an
edge in G′ if, and only if, {u, v} ∈ E(G) (similarly for
{(u, i), (w, k)} and {(v, j), (w, k)}). In other words, we
obtain G′ from G by cloning every vertex and replacing
every edge by a C4 on the corresponding cloned vertices.
Note that the construction of G′ is independent of O.
Next we define the edges of H ′ as follows: for u ∈ U ,
v ∈ V , w ∈ W , and i, j, k = 0, 1, let

{(u, i), (v, j), (w, k)} ∈ E(H ′)

⇔ {u, v, w}∈

(
E(H), {xi, yj , zk} ∈ E(O),

K3(G) \ E(H), {xi, yj , zk} 6∈ E(O).

In other words, (H ′, G′) was constructed so that
(H ′[Ui, Vj ,Wk], G′[Ui, Vj ,Wk]) is a copy of (H,G) if
{xi, yj , zk} ∈ E(O) and a copy of (H,G) otherwise.



In any case, from the discussion above, we
know that (H ′[Ui, Vj ,Wk], G′[Ui, Vj ,Wk]) satisfies
oct3(δ′3, δ2). Hence, the counting lemma from [12]
implies that the number of crossing copies of K

(3)
2,2,2 in

H ′ satisfies (1 ± ξ′)de(O)
3 (1 − d3)8−e(O)d12

2 n6. Noting,
that, due to the construction of H ′, this equals the
number of (partite) labeled, induced copies of O in
H w.r.t. G minus an error of O(n5) (for copies in H ′

which use two copies of the same vertex, e.g., (u, 1) and
(u, 2)), we conclude the proposition. �

5 Concluding remarks

The main result asserts that for 3-uniform hypergraphs
the properties disc3, dev3, and oct3 are equivalent. We
believe the same result holds for k-uniform hypergraphs.
Such equivalences would be useful to obtain algorithmic
regularity lemmas for k-uniform hypergraphs. We
believe those results hold, which is work in progress.
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characterizing hypergraph regularity, Random Struc-
tures Algorithms 21 (2002), no. 3-4, 293–335, Random
structures and algorithms (Poznan, 2001). 1.6, 2, 2, 2,
4

[7] G. Elek and B. Szegedy, Limits of hypergraphs, removal
and regularity lemmas. A non-standard approach, sub-
mitted. 1.4
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[15] V. Rödl and M. Schacht, Regular partitions of hyper-
graphs: Counting lemmas, Combin. Probab. Comput.
16 (2007), no. 6, 887–901. 1.4, 3.1

[16] , Regular partitions of hypergraphs: Regularity
lemmas, Combin. Probab. Comput. 16 (2007), no. 6,
833–885. 1.4, 3.1, 3.1
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